中国实用外科杂志 ›› 2024, Vol. 44 ›› Issue (02): 176-182.DOI: 10.19538/j.cjps.issn1005-2208.2024.02.13

• 专题笔谈 • 上一篇    下一篇

影像组学在围手术期营养评估的应用

沈    贤   

  1. 温州医科大学附属第一医院,浙江温州325015
  • 出版日期:2024-02-01 发布日期:2024-02-23

  • Online:2024-02-01 Published:2024-02-23

摘要: 围手术期的营养评估在手术管理和病人康复中具有重要作用。良好的评估手段有助于筛查识别出需要额外营养干预的病人,从而改善病人的长期预后。现有的围手术期营养评估需要综合考虑病人的主观感受及客观实验室检查及身体成分指标,结合病人的膳食调查结果从而下达营养不良的诊断,其评估流程相对复杂繁琐。影像组学是一种利用计算机分析医学影像学数据的技术,包括传统数据处理中提取影像学特征和建立预测模型的经典方法,以及近些年来利用深度学习实现图像识别处理的新手段,从而实现对病人的身体成分信息的深度挖掘,更加客观而全面地进行个体化营养评估。常用的影像组学技术包括图像分割、特征提取和机器学习等方法,这些方法可以从医学影像中提取出丰富的信息,为围手术期精准营养评估提供支持。然而,数据隐私和伦理问题、技术标准化和数据分析的挑战是影像组学在围手术期营养评估中需要面对的问题。未来的研究应该致力于解决这些问题,推动影像组学在围手术期营养管理中的应用,并为病人提供更好的个体化护理和治疗方案。

关键词: 营养筛查, 营养不良, 肌少症, 影像组学

Abstract: Application of radiomics in perioperative nutritional assessment        SHENG Xian. The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
Abstract    The nutritional assessment during the perioperative period plays a crucial role in surgical management. A comprehensive evaluation method is essential to screen and identify patients who require additional nutritional intervention, thereby improving long-term prognosis. The existing perioperative nutritional assessment involves considering subjective feelings, objective laboratory tests, body composition indicators, and dietary survey results to diagnose malnutrition. However, this evaluation process is relatively complex and cumbersome. Radiomics is a technique that utilizes computer analysis of medical imaging data, encompassing both classical methods from traditional data processing, such as feature extraction from images and predictive modeling, as well as newer methods using deep learning for image recognition and processing in recent years. This allows for in-depth mining of a patient's body composition information, thereby achieving a more objective and comprehensive personalized nutritional assessment. Common radiomics techniques include image segmentation, feature extraction, and machine learning methods which can extract abundant information from medical images to support accurate nutrition assessment during the perioperative period. However, radiomics faces challenges such as data privacy and ethical issues, technical standardization, as well as data analysis challenges in perioperative nutrition assessment. Future research should focus on addressing these issues to promote the application of radiomics in perioperative nutrition management and provide better-personalized care and treatment plans for patients.

Key words: nutritional screening, malnutrition, sarcopenia, radiomics