中国实用外科杂志 ›› 2025, Vol. 45 ›› Issue (05): 596-600.DOI: 10.19538/j.cjps.issn1005-2208.2025.05.21

• 文献综述 • 上一篇    

T1期结直肠癌发生淋巴结转移危险因素及风险评估方法研究进展

郑    煌,周雪亮,Joshua Lin,邵岩飞,樊孝东,杨    熠,Xinyi Tan,张    森,郑民华,孙    晶   

  1. 上海交通大学医学院附属瑞金医院普外科,上海 200025
  • 出版日期:2025-05-01 发布日期:2025-05-28

  • Online:2025-05-01 Published:2025-05-28

摘要: 随着内镜技术的进步,越来越多的T1期结直肠癌(CRC)可通过内镜切除治疗,但淋巴结转移(LNM)的存在仍是决定是否需追加根治性手术的关键因素。目前,多个指南推荐基于病理特征评估LNM风险,但标准尚未统一,且现有指标预测效能有限。除指南公认的病理相关因素外,有研究结果发现浸润宽度、神经侵犯和免疫微环境等也对LNM的发生具有预测价值。在预测模型方面,传统统计学方法基于临床病理特征构建的模型具有一定价值,但效能仍待提升。分子标记物展现出更高潜力,如外泌体miRNA模型等,但检测成本限制了临床应用。人工智能(AI)模型通过整合病理图像等多模态数据可显著提升预测效能,其优势在于规避主观偏差并实现自动化分析。因此,T1期CRC的LNM预测需结合传统病理与新兴分子标记物,AI和多组学分析为精准分层提供新方向,未来需优化模型的临床适用性,以指导个体化治疗。

关键词: T1期结直肠癌, 淋巴结转移, 预测模型, 危险因素

Abstract: With advancements in endoscopic techniques, an increasing number of T1 colorectal cancers (CRCs) can be treated with endoscopic resection. However, the presence of lymph node metastasis (LNM) remains a critical determinant for the necessity of additional radical surgery. Current guidelines recommend risk stratification based on histopathological features, yet these criteria lack standardization and exhibit limited predictive accuracy. Beyond established pathological markers, emerging evidence highlights the prognostic value of horizontal invasion width, perineural invasion, and immune microenvironment characteristics. In predictive modeling, conventional statistical approaches using clinicopathological features show moderate utility but require refinement. Molecular biomarkers, such as miRNA signatures, DNA methylation profiles, and proteomic patterns, demonstrate superior potential, though clinical adoption is hindered by cost constraints. Artificial intelligence (AI)-driven models, which minimize subjective bias and enable automated analysis, significantly enhance predictive performance by integrating histopathological imaging with multimodal data. In conclusion, optimal LNM risk assessment in T1 CRC necessitates a combination of traditional pathology and novel biomarkers. AI and multi-omics approaches represent promising avenues for precision stratification. Future efforts should focus on optimizing model generalizability and clinical applicability to guide personalized therapeutic decision-making.

Key words: T1 colorectal cancer, lymph node metastasis, prediction model, risk factors ,