尹梓名1,孙大运1,2,翁 昊2,3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3,任 泰2,3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3,杨自逸2,3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3,李永盛3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3,4[Author]) AND 1[Journal]) AND year[Order])" target="_blank">4,王广义5,王传磊5,曹 宏6,刘颖斌3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3,4[Author]) AND 1[Journal]) AND year[Order])" target="_blank">4,7,束翌俊2,3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3[Author]) AND 1[Journal]) AND year[Order])" target="_blank">3
摘要: 目的 探讨基于深度神经网络的目标检测技术在腹部双源CT胆囊癌辅助识别系统的临床应用价值。方法 选取2017年1月至2019年12月上海交通大学医学院附属新华医院普外科、吉林大学第一医院肝胆胰外一科和吉林大学中日联谊医院普外科收治的88例病理学检查诊断明确的胆囊癌,28例慢性胆囊炎胆囊结石病人和29例正常胆囊(影像学检查胆囊正常)病人,均行腹部双源CT检查。随机选取101例作为训练组,29例作为验证组,15例作为测试组。首先,利用已标注的10 409张腹部双源CT图像对Mask R-CNN模型进行学习,从而建立自动胆囊癌辅助识别系统。然后对验证组的2974张CT图像通过专业的医师对其进行判断识别,与Mask R-CNN得出的结果进行对比分析。通过不同交并比阈值(IoU)下的平均检测精度(AP)和平均召回率(AR)来对性能进行评估。结果 计算机通过学习组不断迭代训练,Mask R-CNN的损失函数值收敛,诊断误差不断降低。在IoU为0.5时,Mask R-CNN的边界框和掩膜的AP分别为0.929和0.929,IoU为0.75时的边界框和掩膜AP分别为0.901和0.890,IoU为0.5:0.95时的边界框和掩膜AP分别为0.723和0.707,平均召回率分别为0.794和0.774,模型的性能良好。结论 基于深度神经网络的Mask R-CNN胆囊癌辅助识别系统具有较高的准确率和性能,可辅助进行临床诊断。