[1] Cleophas TJ, Cleophas TF.Artificial intelligence for diagnostic purposes: principles, procedures and limitations[J]. Clin Chem Lab Med:CCLM / FESCC, 2010,48(2):159-165.[2] Ramesh AN, Kambhampati C, Monson JR, et al. Artificial intelligence in medicine[J]. Ann Royal Coll Surgeons Engl, 2004,86(5):334-338.[3] Jiang J, Trundle P, Ren J. Medical image analysis with artificial neural networks[J]. Comput Med Imaging Graphics:Official J Comput Med Imaging Soc, 2010,34(8):617-631.[4] 马锐. 人工神经网络原理[M].北京:机械工业出版社,2010:15-30.[5] Biagiotti R, Desii C, Vanzi E, et al. Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US[J]. Radiology, 1999,210(2):399-403.[6] Timmerman D, Verrelst H, Bourne T, et al. Artificial neural network models for the preoperative discrimination between malignant and benign adnexal masses[J]. Ultrasound Obstet Gynecol, 1999,13(1):17-25.[7] Donach M, Yu Y, Artioli G, et al. Combined use of biomarkers for detection of ovarian cancer in high-risk women[J]. Tumour Biol:J Int Soc Oncodevelopm Biol Med, 2010,31(3):209-215.[8] Yang J, Zhu Y, Guo H, et al. Identifying serum biomarkers for ovarian cancer by screening with surface-enhanced laser desorption/ionization mass spectrometry and the artificial neural network[J]. Intl J Fynecol Cancer : Official J Int Gynecol Cancer Soc, 2013,23(4):667-672.[9] Thakur A, Mishra V, Jain SK. Feed forward artificial neural network: tool for early detection of ovarian cancer[J]. Sci Pharmac, 2011,79(3):493-505.[10] Ayer T, Alagoz O, Chhatwal J,et al. Breast cancer risk estimation with artificial neural networks revisited[J]. Cancer, 2010,116(14):3310-3321.[11] Saritas I. Prediction of breast cancer using artificial neural networks[J]. J Med Syst, 2012,36(5):2901-2907.[12] 蔡鸿宁, 张蕾, 张敦兰, 等. 人工神经网络在宫颈癌预后预测中的应用[J]. 肿瘤防治研究, 2012,39(9):1117-1119.[13] Siristatidis C, Pouliakis A, Chrelias C,et al. Artificial intelligence in IVF: a need[J]. Syst Biol Reprod Med, 2011,57(4):179-185.[14] Robinson CJ, Swift S, Johnson DD,et al. Prediction of pelvic organ prolapse using an artificial neural network[J]. Am J Obstet Gynecol, 2008,199(2):193.e1-6.[15] Salvatore S, Serati M, Siesto G,et al. Correlation between anatomical findings and symptoms in women with pelvic organ prolapse using an artificial neural network analysis[J]. Int Urogynecol J, 2011,22(4):453-459.[16] Maeda K, Noguchi Y, Matsumoto F,et al.Quantitative fetal heart rate evaluation without pattern classification: FHR score and artificial neural network analysis[J]. Network: Computation Neural Syst, 2010,21(3-4):127-141.[17] 田敬霞,张景祥.人工神经网络预测分娩方式的研究[J].医学信息(中旬刊), 2012,24(8):3921-3922.[18] Vinken MP, Rabotti C, Mischi M,et al. Accuracy of frequency-related parameters of the electrohysterogram for predicting preterm delivery: a review of the literature[J]. Obstet Gynecol Surv, 2009,64(8):529-541.[19] Robinson CJ, Hill EG, Alanis MC,et al. Examining the effect of maternal obesity on outcome of labor induction in patients with preeclampsia[J]. Hypertensi Pregna, 2010,29(4):446-456.(2014-05-10收稿 2014-07-05修回) |