[1] Bran GM,Stern-Straeter J, Hörmann K,et al. Apoptosis in bone for tissue engineering [J].Arch Med Res, 2008, 39(5):467-482.[2] 曹谊林. 骨组织工程在骨科的应用[J]. 临床外科杂志,2008,16(1):21-24.[3] Teixeira S, Fernandes H, Leusink A, et al. In vivo evalution of highly macroporous ceramic scaffolds for bone tissue engineering [J]. J Biomed Mater Res A, 2010, 93(2):567-575.[4] Tarafder S, Balla VK, Davies NM, et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering [J]. J Tissue Eng Regen Med, 2012, 7(8): 631-641.[5] Bandyopadhyay A1, Petersen J, Fielding G, et al. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates:influence on strength degradation, mechanical properties, and in vitro bone-cell material interactions [J]. J Biomed Mater Res B Appl Biomater, 2012, 100(8):2203-2212.[6] Shie MY, Ding SJ, Chang HC. The role of silicon in osteoblast-like cell proliferation and apoptosis [J]. Acta Biomater, 2011, 7(6):2604-2614.[7] Vitale-Brovarone C, Di Nunzio S, Bretcanu O, et al. Macroporous glass-ceramic materials with bioactive properties[J]. J Mater Sci Mater Med, 2004, 15(3):209-217.[8] San MB, Kriauciunas R, Tosatti S, et al. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds [J]. J Biomed Mater Res A, 2010, 94(4):1023-1033.[9] Wu C, Zhou Y, Fan W, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering [J]. Biomaterials, 2012, 33(7):2076-2085.[10] Ren T,Ren J,Jia X,et al. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds [J].J Biomed Mater Res A, 2005, 74(4):562-569.[11] Balla VK, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties [J]. Acta Biomater, 2010, 6(8):3349-3359.[12] Xue W, Krishna BV, Bandyopadhyay A, et al. Processing and biocompatibility evaluation of laser processed porous titanium [J]. Acta Biomater, 2007, 3(6):1007-1018.[13] Yun YH, Dong ZY, Lee N, et al. Revolutionizing biodegradable metals [J]. Mater Today, 2009, 12(10):22-32.[14] Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/b-TCP for bone tissue engineering [J]. Bone, 2010, 46(2):386-395.[15] Laschke MW, Strohe A, Menger, et al. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly (ester-urethane) composite scaffold for bone tissue engineering [J]. Acta Biomater, 2010, 6(6): 2020-2027.[16] 陈鹏,毛天球,刘冰,等. 纳米羟基磷灰石复合胶原材料负载骨髓基质干细胞修复颅骨极限缺损的实验研究[J].临床口腔医学杂志,2005,21(12):730-732.[17] Fukui N,Sato T, Kuboki Y, et al. Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation[J].Biomed Mater Eng,2008,18(1):25-33.[18] Banerjee SS, Tarafder S, Davies NM, et al. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of β-TCP ceramics [J]. Acta Biomater, 2010, 6(10):4167-4174. [19] 陈滨,裴国献,王珂,等.大动物体内促组织工程骨成骨及血管化手段的研究[J].中国医学科学院学报,2003,25(1):26-31.[20] Thein-Han W, Xu HH. Collagen-calcium phosphate cement scaffolds seeded with umbilical cord stem cells for bone tissue engineering [J]. Tissue Eng Part A, 2011, 17(23-24):2943-2954.[21] Wernike E, Montjovent MO, Liu Y, et al. VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo [J]. Eue Cell Mater, 2010, 19:30-40.[22] Papadimitropoulos A, Mastrogiacomo M, Peyrin F, et al. Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold:an X-ray computed microtomography study [J]. Biotechnol Bioeng, 2007, 98(1):271-281.[23] Naito H, Dohi Y, Zimmermann WH, et al. The effect of mesenchymal stem cell osteoblastic differentiation on the mechanical properties of engineered bone-Like tissue [J]. Tissue Eng Part A, 2011, 17(17-18):2321-2329.[24] Li J, Hong J, Zheng Q, et al. Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2 [J]. J Orthop Res, 2011, 29(11):1745-1752.[25] Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update [J]. Nat Rev Cancer, 2012, 12(3):159-169.[26] Kang H, Sung J, Jung HM, et al. Insulin-like growth factor 2 promotes osteogenic cell differentiation in the parthenogenetic murine embryonic stem cells [J]. Tissue Eng Part A, 2012, 18(3-4):331-341.[27] Verron E, Khairoun I, Guicheux J, et al. Calcium phosphate biomaterials as bone drug delivery systems: a review [J]. Drug Discov Today, 2010, 15(13-14):547-552.[28] 卜丽莎,李建军,高申,等. 转染BMP-2基因的兔BMSCs种植PLA/PCL支架体外构建组织工程骨[J].中国矫形外科杂志,2004,12(9):677-679.[29] Kimelman-Bleich N, Pelled G, Zilberman Y, et al. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair [J]. Mol Ther, 2011, 19(1):53-59.[30] Patel ZS, Ueda H, Yamamoto M, et al. In vitro and in vivo release of vascular endothelial growth factor from gelatin microparticles and biodegradable composite scaffolds [J]. Pharm Res, 2008, 25(10):2370-2378.[31] Lan Levengood SK, Polak SJ, Poellmann MJ, et al. The effect of BMP-2 on micro and macroscale osteointegration of biphasic calcium phosphate scaffolds with multiscale porosity [J].Acta Biomater, 2010, 6(8):3283-3291.