中国实用口腔科杂志

• 论著 • 上一篇    下一篇

中国人颞下颌关节骨性结构的三维测量和聚类分析

张露珠1a何冬梅1a孟帅帅2,刘    婷2,李    毅2,付宇卓2,白    果1a,董敏俊1b邹建明3   

  1. 1.上海交通大学医学院附属第九人民医院·口腔医学院 a口腔外科,b放射科,上海市口腔医学重点实验室,上海 200011;2.上海交通大学微电子学院,上海  200240;3.江苏省无锡市第三人民医院口腔科,江苏  无锡  214041
  • 出版日期:2016-03-15 发布日期:2016-04-13
  • 基金资助:

     国家自然科学基金(81472117);上海交通大学医工交叉基金(YG2014MS05)

  • Online:2016-03-15 Published:2016-04-13

摘要:

目的    通过对中国人颞下颌关节骨性结构进行三维测量和聚类分析,为人工关节假体的设计和选型提供依据。方法    选取2011年1月至2015年12月在上海交通大学医学院附属第九人民医院因非颞下颌关节疾病就诊,进行颌面部CT扫描的中国人患者448例(797侧正常颞下颌关节)进行研究。采用Proplan CMF 1.4软件对其颌面部CT扫描数据进行三维重建,选择13项特征性指标对关节窝及髁突进行三维测量,并对数据进行统计分析和聚类分析,以确定人工关节假体的设计类型。结果    初步建立了中国人颞下颌关节骨性结构的解剖数据库,13项测量指标性别差异均有统计学意义。聚类结果显示中国人的颞下颌关节窝分为3种类型,髁突分为4种类型(判别分析:关节窝数据准确率97.24%、髁突-下颌支数据准确率94.98%)。结论    中国人颞下颌关节骨性结构的三维测量和聚类分析为人工关节假体的设计选型提供了依据。

关键词: 颞下颌关节骨性结构, 三维测量, 聚类分析

Abstract:

Objective    To provide evidence for temporomandibular joint (TMJ)prostheses design and size chosen via three-dimensional (3D)measurements of CT data and cluster analysis of the Chinese. Methods    CT data from 448 adults from East China with normal TMJs were recruited and reconstructed by Proplan CMF 1.4 software. Thirteen parameters of the TMJ fossa and condyle-ramus units were performed by three-dimensional measurements. The data were analyzed statistically and hierarchical cluster analyses were performed to determine the size design. Results    The anatomical database of Chinese TMJ was established. There were significant differences in the 13 TMJ measurement parameters between the males and females. The glenoid fossa was grouped into 3 clusters, and the condyle-ramus units were grouped into 4 clusters. Discriminant analyses were capable of correctly classifying 97.24% of the glenoid fossae and 94.98% of the condyle-ramus units. Conclusion    Three-dimensional measurements and cluster analysis of Chinese TMJ osseous morphology can provide an anatomical reference for prosthesis size design of Chinese TMJ replacement.

Key words: temporomandibular joint osseous morphology, three-dimensional measurement, cluster analysis