经脐单孔腹腔镜与传统腹腔镜全子宫切除手术并发症的影响因素分析及预测模型构建

任小玉, 冯剑敏, 杨涵琳, 朱焱, 龚芫, 田维杰, 訾聃

中国实用妇科与产科杂志 ›› 2025, Vol. 41 ›› Issue (7) : 755-759.

PDF(1562 KB)
PDF(1562 KB)
中国实用妇科与产科杂志 ›› 2025, Vol. 41 ›› Issue (7) : 755-759. DOI: 10.19538/j.fk2025070119
论著

经脐单孔腹腔镜与传统腹腔镜全子宫切除手术并发症的影响因素分析及预测模型构建

作者信息 +

Analysis of influencing factors and construction of a prediction model for surgical complications in transumbilical single-Port Laparoscopic and conventional laparoscopic total hysterectomy

Author information +
文章历史 +

摘要

目的 探讨经脐单孔腹腔镜和传统腹腔镜全子宫切除术患者手术并发症的共同影响因素及预测模型构建。 方法 选取2021年9月至2024年12月于贵州省人民医院因良性妇科病变行经脐单孔或传统腹腔镜全子宫切除术的585例患者为研究对象,收集患者临床资料,按照7∶3比例划分为训练集和验证集。在训练集中分别用LASSO-logistic回归、全变量logistic回归及逐步logistic回归模型筛选并发症影响因素,整合曲线下面积(AUC)、Akaike信息准则(AIC)/贝叶斯信息准则(BIC)、净重分类指数(NRI)/综合判别改善指数(IDI)多维度评估模型效能并开发网页列线图工具,最终经验证集验证其区分度、校准度与临床适用性。结果 术前中重度贫血、剖宫产史、高血压及子宫>12孕周为独立危险因素,LASSO-logistic回归模型具有较好预测性能[AUC=0.792(95%CI 0.736~0.849),AIC =341.059 ,BIC = 374.115,NRI>0,IDI>0]。验证集AUC=0.786(95%CI 0.725~0.845)。校准曲线显示模型预测与实测风险吻合良好。决策曲线表明当风险阈值>0.04时,模型可提供临床净收益(训练集阈值范围0.07~0.98,验证集0.04~0.97)。结论 术前贫血、剖宫产史、高血压和子宫大小是经脐单孔腹腔镜或传统腹腔镜全子宫切除手术并发症的共同影响因素。LASSO-logistic回归模型具有一定临床预测价值。

Abstract

Objective To investigate the influencing factors of surgical complications in patients undergoing transumbilical single-port laparoscopic total hysterectomy and traditional laparoscopic total hysterectomy and to construct a prediction model. Methods The clinical data of patients undergoing transumbilical single-port or traditional laparoscopic total hysterectomy for benign diseases at Guizhou Provincial People's Hospital from September 2021 to December 2024 were retrospectively collected. The data were divided into a training set (n=409) and a validation set (n=219). LASSO-logistic regression,full-variable logistic regression,and stepwise logistic regression models were applied to screen for influencing factors in the training set. Model performance was evaluated in multiple dimensions using the area under the receiver operating characteristic curve (AUC),Akaike information criterion (AIC)/Bayesian information criterion (BIC),net reclassification index (NRI)/integrated discrimination improvement index (IDI),and a nomogram was developed. The validation set was used to assess its discrimination,calibration,and clinical applicability. Results Moderate to severe preoperative anemia,history of cesarean delivery,hypertension,and uterine size >12 gestational weeks were identified as independent risk factors. The LASSO-logistic regression model demonstrated optimal predictive performance [AUC=0.792 (95%CI 0.736-0.849);AIC=341.059;BIC=374.115;NRI > 0;IDI > 0]. Validation yielded an AUC of 0.785 (95%CI 0.700-0.870). Calibration curves showed good consistency between predicted and observed risks. Decision curve analysis confirmed clinical net benefit at risk thresholds >0.06 (training set:0.07-0.98;validation set:0.06-0.86). Conclusions Preoperative anemia,history of cesarean section,hypertension,and uterine size are identified as influencing factors for complications in laparoscopic total hysterectomy. The LASSO-logistic regression model demonstrates certain clinical prediction value.

关键词

子宫切除术 / 经脐单孔腹腔镜 / 手术并发症 / 预测模型

Key words

hysterectomy / transumbilical single-port laparoscopy / surgical complications / prediction model

引用本文

导出引用
任小玉, 冯剑敏, 杨涵琳, . 经脐单孔腹腔镜与传统腹腔镜全子宫切除手术并发症的影响因素分析及预测模型构建[J]. 中国实用妇科与产科杂志. 2025, 41(7): 755-759 https://doi.org/10.19538/j.fk2025070119
REN Xiao-yu, FENG Jian-min, YANG Han-lin, et al. Analysis of influencing factors and construction of a prediction model for surgical complications in transumbilical single-Port Laparoscopic and conventional laparoscopic total hysterectomy[J]. Chinese Journal of Practical Gynecology and Obstetrics. 2025, 41(7): 755-759 https://doi.org/10.19538/j.fk2025070119
中图分类号: R713.4   

参考文献

[1]
中国医师协会妇产科医师分会妇科肿瘤专业委员会(学组). 良性子宫疾病子宫切除术手术路径的中国专家共识(2021年版)[J]. 中国实用妇科与产科杂志, 2021, 37(8):821-825. DOI: 10.19538/j.fk2021080109.
[2]
Zhu CR, Mallick R, Singh SS, et al. Risk Factors for Bowel Injury in Hysterectomy for Benign Indications[J]. Obstet Gynecol, 2020, 136(4):803-810. DOI: 10.1097/AOG.0000000000004007.
[3]
唐雷, 钟世镇. 人工智能及其在医学领域中的应用[J]. 中国实用妇科与产科杂志, 2024, 40(9):876-878.DOI:10.19538/j.fk2024090104.
[4]
Pepin KJ, Cook EF, Cohen SL. Risk of complication at the time of laparoscopic hysterectomy: a prediction model built from the National Surgical Quality Improvement Program database[J]. Am J Obstet Gynecol, 2020, 223(4):555.e1-555.e7. DOI: 10.1016/j.ajog.2020.03.023.
[5]
陈艳红, 陈敦金. 人工智能——助力产科服务提升[J]. 中国实用妇科与产科杂志, 2024, 40(10):964-968. DOI:10.19538/j.fk2024100102.
[6]
吴云肖, 唐瑜芬, 郑莉, 等. 重度阻塞性睡眠呼吸暂停患儿临床预测模型研究[J]. 中国实用儿科杂志, 2022, 37(9):701-707. DOI:10.19538/j.ek2022090611.
[7]
罗玉婷, 陈纯玲, 郭予雄, 等. 先天性心脏病术后脓毒症患儿列线图预后模型的构建与验证[J]. 中国实用儿科杂志, 2024, 39(2):119-124.DOI:10.19538/j.ek2024020609.
[8]
张沥今, 魏夏琰, 陆嘉琦, 等. Lasso回归:从解释到预测[J]. 心理科学进展, 2020, 28(10):1777-1791. DOI: 10.3724/SP.J.1042.2020.01777.
[9]
王永军. 妇科良性疾病经脐单孔腹腔镜子宫切除术的优劣势评价[J]. 中国实用妇科与产科杂志, 2023, 39(5):508-511. DOI: 10.19538/j.fk2023050107.
[10]
Tyan P, Taher A, Carey E, et al. Effect of Perioperative Transfusion on Postoperative Morbidity Following Minimally Invasive Hysterectomy for Benign Indications[J]. J Minim Invasive Gynecol, 2020, 27(1):200-205. DOI: 10.1016/j.jmig.2019.03.021.
[11]
Lindquist S, Shah N, Overgaard C, et al. Association of Previous Cesarean Delivery With Surgical Complications After a Hysterectomy Later in Life[J]. JAMA Surg, 2017, 152(12):1148-1155. DOI: 10.1001/jamasurg.2017.2825.
[12]
Pepin K, Cook F, Maghsoudlou P, et al. Risk-prediction Model for Patients Undergoing Laparoscopic Hysterectomy[J]. J Minim Invasive Gynecol, 2021, 28(10): 1751-1758.e1.DOI:10.1016/j.jmig.2021.03.001.
[13]
Madika AL, MacDonald CJ, Gelot A, et al. Hysterectomy,non-malignant gynecological diseases,and the risk of incident hypertension: The E3N prospective cohort[J]. Maturitas, 2021, 150:22-29. DOI: 10.1016/j.maturitas.2021.06.001.
[14]
O'Hanlan KA, McCutcheon SP, McCutcheon JG. Laparoscopic hysterectomy: impact of uterine size[J]. J Minim Invasive Gynecol, 2011, 18(1):85-91. DOI: 10.1016/j.jmig.2010.09.016.
[15]
Li J, Gao M, D'Agostino R. Evaluating classification accuracy for modern learning approaches[J]. Stat Med, 2019, 38(13):2477-2503. DOI: 10.1002/sim.8103.

基金

国家卫生健康委医院管理研究所“日间医疗规范化管理研究项目”(DSZ20251040)
贵州省科技计划项目[黔科合基础-ZK(2024)一般452,黔科合基础-ZK(2023)一般204,黔科合基础-ZK(2022)一般270]
贵州省卫生健康委科学技术基金项目(2024GZWJKJXM1253)
贵州省卫生健康委科学技术基金项目(gzwkj2024-433)

PDF(1562 KB)

Accesses

Citation

Detail

段落导航
相关文章

/