应用机器学习建立产后女性压力性尿失禁风险预测模型

杨晴晴, 朱珏, 汪期明, 杨名洁, 钱苗红, 张晶

中国实用妇科与产科杂志 ›› 2025, Vol. 41 ›› Issue (7) : 734-737.

PDF(1725 KB)
PDF(1725 KB)
中国实用妇科与产科杂志 ›› 2025, Vol. 41 ›› Issue (7) : 734-737. DOI: 10.19538/j.fk2025070114
论著

应用机器学习建立产后女性压力性尿失禁风险预测模型

作者信息 +

Application of machine learning to establish a risk prediction model for postpartum women with stress urinary incontinence

Author information +
文章历史 +

摘要

目的 探讨应用机器学习构建产后女性压力性尿失禁(SUI)风险预测模型并内部验证,为早期防治提供依据。方法 纳入2022年10月至2023年6月宁波大学附属妇女儿童医院516例产后42d盆底筛查产妇(SUI病例组82例,对照组434例),提取年龄、分娩方式、产次、盆底肌电生理数据、盆底超声指标等影响因素,采用随机森林、支持向量机等5种机器学习算法建模,通过十折交叉验证比较模型效能。结果 产后SUI发生率15.89%(82/516)。随机森林模型表现最优,训练集F1值1.000、AUC 1.000,验证集F1值0.776、AUC 0.837。关键影响因素包括盆底肌电生理参数(紧张收缩、耐力收缩等阶段)、年龄、产次、会阴损伤、体重指数(BMI)等,其中盆底肌电参数对分类贡献最高。结论 随机森林模型预测效能最佳,盆底肌电生理参数与产后 SUI 强相关。该模型可辅助医务人员精准评估风险,指导早期个性化康复干预,如凯格尔运动、生物反馈治疗等,为产后SUI防治提供新工具。

Abstract

Objective To develop and internally validate a risk prediction model for postpartum stress urinary incontinence (SUI) in women using machine learning, aiming to provide evidence for early prevention. Methods This retrospective study included 516 postpartum women who underwent pelvic floor screening at 42 days after delivery at Ningbo University Women and Children's Hospital from October 2022 to June 2023 (a case group of 82 cases and a control group of 434 cases). The influencing factors were collected, including age, delivery mode, parity, electromyographic(EMG) data of pelvic floor and pelvic floor ultrasound data. Five machine learning algorithms such as random forest (RF) and support vector machine (SVM) were used to build predictive models. Model performance was evaluated using 10-fold cross-validation. Results The overall incidence of postpartum SUI was 15.89%. Among all models, the random forest model demonstrated the best performance, with an F1 score of 1.000 and AUC of 1.000 in the training set, and an F1 score of 0.776 and AUC of 0.837 in the validation set. The key influencing factors included pelvic floor EMG parameters (e.g., intense contraction and endurance contraction phases), age, parity, perineal injury, and BMI. Pelvic floor EMG parameters contributed the most to classification performance. Conclusions The random forest model shows the best predictive ability. Pelvic floor EMG parameters are strongly associated with postpartum SUI. This model offers a valuable tool for clinicians to accurately assess individual risk and guide early rehabilitation intervention, such as Kegel exercises and biofeedback therapy, which provides new tools for the prevention and treatment of postpartum SUI.

关键词

产后女性压力性尿失禁 / 机器学习 / 随机森林 / 模型

Key words

postpartum stress urinary incontinence in women / machine learning / random forest / model

引用本文

导出引用
杨晴晴, 朱珏, 汪期明, . 应用机器学习建立产后女性压力性尿失禁风险预测模型[J]. 中国实用妇科与产科杂志. 2025, 41(7): 734-737 https://doi.org/10.19538/j.fk2025070114
YANG Qing-qing, ZHU Jue, WANG Qi-ming, et al. Application of machine learning to establish a risk prediction model for postpartum women with stress urinary incontinence[J]. Chinese Journal of Practical Gynecology and Obstetrics. 2025, 41(7): 734-737 https://doi.org/10.19538/j.fk2025070114
中图分类号: R714.14   

参考文献

[1]
Hunskaar S, Lose G, Sykes D, et al. The prevalence of urinary incontinence in women in four European countries[J]. BJU International, 2004, 93(3):324-330.DOI: 10.1111/j.1464-410x.2003.04609.x.
[2]
Hannestad YS, Rortveit G, Sandvik H, et al. A community-based epidemiological survey of female urinary incontinence: the Norwegian EPINCONT study. Epidemiology of Incontinence in the County of Nord-Trøndelag[J]. Journal of Clinical Epidemiology, 2000, 53(11):1150-1157.DOI: 10.1016/s0895-4356(00)00232-8.
[3]
陈永连, 周灿坤, 黄晓斌, 等. 自体阴道前壁黏膜瓣尿道悬吊术治疗女性压力性尿失禁的临床疗效研究[J]. 中国实用妇科与产科杂志, 2024, 40(11):1130-1134.DOI:10.19538/j.fk2024110116.
[4]
Paul Abrams, Linda Cardozo, Magnus Fall, et al. The standardization of terminology of lower urinary tract function: Report from the Standardisation Sub-Committee of the International Continence Society[J]. Neurourology and Urodynamics, 2002, 21(2):167-178.DOI: 10.1016/s0090-4295(02)02243-4.
[5]
Deng X, Qiu L, Sun X, et al. Early prediction of body compositionparameters on metabolically unhealthy in the Chinese population via advanced machine learning[J]. Front Endocrinol (Lausanne), 2023,(14): 1228300.DOI: 10.3389/fendo.2023.1228300.
[6]
温慧莹, 李笑天. 人工智能及机器学习深度算法在产科母胎疾病中的应用[J]. 中国实用妇科与产科杂志, 2024, 40(8):804-809.DOI:10.19538/j.fk2024080109.
[7]
梁翔宇, 吴振起, 王子, 等. 儿童抽动障碍风险预测模型的建立与评价研究[J]. 中国实用儿科杂志, 2024, 39(8):620-625.DOI:10.19538/j.ek2024080613.
[8]
Aune D, Mahamat-Saleh Y, Norat T, et al. Body mass index,abdominal fatness,weight gain and the risk of urinary incontinence: a systematic review and dose-response meta-analysis of prospective studies[J]. BJOG, 2019, 126(12):1424-1433.DOI: 10.1111/1471-0528.15897.
[9]
Patel K, Long JB, Boyd SS, et al. Natural history of urinary incontinence from first childbirth to 30-months postpartum[J]. Arch Gynecol Obstet, 2021, 304(3): 713-724.DOI: 10.1007/s00404-021-06134-3.
[10]
李海英, 王忠民, 吴晓爽, 等. 会阴侧切对女性盆底功能的近期影响[J]. 中国实用妇科与产科杂志,2013, 29(5):377-380.DOI: 1005-2216( 2013)05-0377-04
[11]
Maroyi R, Mwambali N, Moureau MK, et al. Prevalence of urinary incontinence in pregnant and postpartum women in the Democratic Republic of Congo[J]. Int Urogynecol J, 2021, 32(7):1883-1888.DOI: 10.1007/s00192-021-04885-w.
[12]
Kokabi R, Yazdanpanah D. Effects of delivery mode and sociodemographic factors on postpartum stress urinary incontinency in primipara women: A prospective cohort study[J]. J Chin Med Assoc, 2017, 80(8): 498-502. DOI: 10.1016/j.jcma.2016.06.008
[13]
Danforth KN, Townsend MK, Lifford K, et al. Risk Factors for Urinary Incontinence among Middle-aged Women[J]. American Journal of Obstetrics and Gynecology, 2006, 194(2): 339-345.DOI: 10.1016/j.ajog.2005.07.051
[14]
赵颖, 沈冉, 等. 盆底超声联合肌电生理参数对初产妇不同程度产后压力性尿失禁和盆底功能的诊断价值[J]. 中国医学装备, 2024, 21(1):97-102. DOI: 10.3969/j.issn.1672-8270.2024.01.020

基金

宁波市公益类科技计划重点项目(2022S034)
宁波市医疗卫生高端团队(2024021020)
浙江省医药卫生面上项目(2020KY878)

PDF(1725 KB)

Accesses

Citation

Detail

段落导航
相关文章

/